Latest Post
Optimization: Bound Phase Method
- Get link
- X
- Other Apps
Bound Phase Method Algorithm in C
#include<stdio.h>#include<math.h>
double myFun(double x);
int main()
{
double xw,a,b,fa,fb,fxw,D,y ;
int k,o,z;
float x[100],fx[100];
k = 0;
start:
printf("Enter x[0]:");
scanf("%lf",&xw);
printf("Enter D:");
scanf("%lf",&D);
a = xw + D;
b = xw - D;
fxw = myFun(xw);
printf("\nf(x0) = %.2lf",fxw);
fa = myFun(a);
printf("\nf(x0 + D) = %.2lf",fa);
fb= myFun(b);
printf("\nf(x0 - D) = %.2lf",fb);
printf("\nx[%d] = %.2lf",k,xw);
x[0] = xw;
fx[k] = fxw;
o = k+1;
if (fb <= fxw && fxw <= fa)
{
D = -D;
goto jump1;
}
else if (fb >= fxw && fxw >= fa)
{
goto jump1;
}
else
{
printf("\n\n\tChange Initial Guess...\n\n");
goto start;
}
jump1:
x[o] = (x[k] + (pow(2,k) * D));
printf("\n\nx[%d] = %.3f",o,x[o]);
fx[o] = myFun(x[o]);
printf("\nfx[%d] = %.3f",o,fx[o]);
if (fx[o] < fxw)
{
if (fx[o] < fx[k])
{
k = k + 1;
o = o + 1;
goto jump1;
}
else
{
printf("\nBounded range: (x(%d),x(%d))",k-1,k+1);
printf("\nk = %d",k);
}
}
else
{
goto end;
}
end:
return 0;
}
double myFun(double x) // function definition
{
double y;
y = ((x*x)+(54/x));
return y; // return statement
}
Output:
![]() |
Bound Phase Method Optimization Algorithm |
- Get link
- X
- Other Apps
Popular posts from this blog
VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench
Verilog Code for 1-4 DEMUX Dataflow Modelling module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); assign s1n = ~ s1; assign s0n = ~ s0; assign y0 = d& s0n & s1n; assign y1 = d & s0 & s1n; assign y2 = d & s0n & s1; assign y3 = d & s0 & s1; endmodule //Testbench code for 1-4 DEMUX Dataflow Modelling initial begin // Initialize Inputs ...
VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling
module bcd_ex3_Dataflow( input a, input b, input c, input d, output w, output x, output y, output z ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd( input w, input x, input y, input z, output a, output b, output c, output d ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule
Full Subtractor Verilog Code in Structural/Gate Level Modelling with Testbench
Verilog Code for Full Subtractor Structural/Gate Level Modelling module full_sub(borrow,diff,a,b,c); output borrow,diff; input a,b,c; wire w1,w4,w5,w6; xor (diff,a,b,c); not n1(w1,a); and a1(w4,w1,b); and a2(w5,w1,c); and a3(w6,b,c); or o1(borrow,w4,w5,w6); endmodule //Testbench code for Full Subtractor Structural/Gate Level Modelling initial begin // Initialize Inputs a = 0; b = 0; c = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; a = 0;b = 0;c = 1; #100; a = 0;b = 1;c = 0; #100; a = 0;b = 1;c = 1; #100; a = 1;b = 0;c = 0; #100; a = 1;b = 0;c = 1; #100; a = 1;b = 1;c = 0; #100; a = 1;b = 1;c = 1; end Output: RTL Schematic: Full Subtractor Verilog Other Verilog Programs: Go to Index of Verilog Programming
Verilog: 4 to 2 Encoder Behavioral Modelling using Case Statement with Testbench Code
Verilog Code for 4 to 2 Encoder Behavioral Modelling using Case Statement with Testbench Code module 4_2_ENC( input [3:0]din, output [1:0]dout ); reg [1:0]dout; always @ (din) case (din) 1 : dout[0] = 0; 2 : dout[1] = 1; 4 : dout[2] = 2; 8 : dout[3] = 3; default : dout = 2’bxx; endcase endmodule //Testbench code for 4 to 2 Encoder Behavioral Modelling using Case Statement initial begin // Initialize Inputs din = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; din=1; #100; din=2; #100; din=4; #100; din=8; end initial begin #100 $monitor (“ din=%b, dout=%b”, din, dout); end endmodule Xillinx Output: 4 - 2 Encoder Behavioral Modelling Verilog Response
VLSI: 8-3 Encoder Dataflow Modelling with Testbench
Verilog Code for 8-3 Encoder Dataflow Modelling module encoder_8_to_3( input d0, input d1, input d2, input d3, input d4, input d5, input d6, input d7, output q0, output q1, output q2 ); assign q0 = ( d1 | d3 | d5 | d7 ); assign q1 = ( d2 | d3 | d6 | d7 ); assign q2 = ( d4 | d6 | d5 | d7 ); endmodule //Testbench code for 8-3 Encoder Dataflow Modelling initial begin ...
Comments
Post a Comment