Latest Post
Ads
Optimization: Bound Phase Method
- Get link
- X
- Other Apps
Bound Phase Method Algorithm in C
#include<stdio.h>#include<math.h>
double myFun(double x);
int main()
{
double xw,a,b,fa,fb,fxw,D,y ;
int k,o,z;
float x[100],fx[100];
k = 0;
start:
printf("Enter x[0]:");
scanf("%lf",&xw);
printf("Enter D:");
scanf("%lf",&D);
a = xw + D;
b = xw - D;
fxw = myFun(xw);
printf("\nf(x0) = %.2lf",fxw);
fa = myFun(a);
printf("\nf(x0 + D) = %.2lf",fa);
fb= myFun(b);
printf("\nf(x0 - D) = %.2lf",fb);
printf("\nx[%d] = %.2lf",k,xw);
x[0] = xw;
fx[k] = fxw;
o = k+1;
if (fb <= fxw && fxw <= fa)
{
D = -D;
goto jump1;
}
else if (fb >= fxw && fxw >= fa)
{
goto jump1;
}
else
{
printf("\n\n\tChange Initial Guess...\n\n");
goto start;
}
jump1:
x[o] = (x[k] + (pow(2,k) * D));
printf("\n\nx[%d] = %.3f",o,x[o]);
fx[o] = myFun(x[o]);
printf("\nfx[%d] = %.3f",o,fx[o]);
if (fx[o] < fxw)
{
if (fx[o] < fx[k])
{
k = k + 1;
o = o + 1;
goto jump1;
}
else
{
printf("\nBounded range: (x(%d),x(%d))",k-1,k+1);
printf("\nk = %d",k);
}
}
else
{
goto end;
}
end:
return 0;
}
double myFun(double x) // function definition
{
double y;
y = ((x*x)+(54/x));
return y; // return statement
}
Output:
Bound Phase Method Optimization Algorithm |
- Get link
- X
- Other Apps
Ads
Popular posts from this blog
1 to 4 DEMUX (Demultiplexer) Verilog CodeStructural/Gate Level Modelling with Testbench
Verilog Code for 1 to 4 DEMUX Structural/Gate Level Modelling 1-4 DEMUX module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); not(s1n,s1),(s0n,s0); and(y0,d,s0n,s1n),(y1,d,s0,s1n),(y2,d,s0n,s1),(y3,d,s0,s1); endmodule //Testbench code for 1 to 4 DEMUX Structural/Gate Level Modelling initial begin // Initialize Inputs d = 1; s0 = 0; s1 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100;d = 1;s0 = 1;s1 = 0; #100;d = 1;s0 = ...
VLSI: 2 Bit Magnitude Comparator Dataflow Modelling
module mag_comp2bit( input a0, input a1, input b0, input b1, output p, // p = (a < b) output r, // r = (a > b) output q // q = (a = b) ); assign q = ((~a1) ^ (b1)) & (a0 & b0); assign p = (((~a1) & b1) | (b0 & (~a0) & (~a1)) | ((~a0) & b1 & b0)); assign r = ((a1 & (~b1)) | ((~b0) & a1 & a0) | (a0 & (~b1) & (~b0))); endmodule
VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench
Verilog Code for 1-4 DEMUX Dataflow Modelling module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); assign s1n = ~ s1; assign s0n = ~ s0; assign y0 = d& s0n & s1n; assign y1 = d & s0 & s1n; assign y2 = d & s0n & s1; assign y3 = d & s0 & s1; endmodule //Testbench code for 1-4 DEMUX Dataflow Modelling initial begin // Initialize Inputs ...
VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling
module bcd_ex3_Dataflow( input a, input b, input c, input d, output w, output x, output y, output z ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd( input w, input x, input y, input z, output a, output b, output c, output d ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule
VLSI: Half Subtractor and Full Subtractor Gate Level Modelling
Half Subtractor: Verilog Module Code: module half_subtractor ( input a, input b, output diff output borr ); wire x; xor (diff,a,b); not (x,a); and (borr,x,b); endmodule Full Subtractor: Verilog Module Code: module full_subtractor ( input a, input b, input c, output diff output borr ); wire x,n2,z,n1; xor s1(x,a,b); not s3(n2,x); not s4(n1,c); and s5(y,n1,b); xor s2(diff,a,x); and s6(z,n2,a); or (borr,y,z); endmodule
Comments
Post a Comment