Posts
Showing posts from 2020
Latest Post
Ads
Verilog: User Defined Primitives (UDP) of D Flip Flop
- Get link
- X
- Other Apps
Verilog Code for User Defined Primitives of D Flip Flop primitive D_FF( input clk, clear , output q, q+ ); table //clk clear : q : q+ ; ? 1 : ? : 0 ; //asynchronous clear condition ? (10) : ? : - ; //ignore -ve edge of clear (10) 0 : 1 : 1 ; //toggle FF at -ve edge of clk (10) 0 : 0 : 0 ; (0?) 0 : ? : - ; //ignore +ve edge of clock endtable endprimitive Also See: List of Verilog Programs
Verilog: BCD Counter (Mod 10 Counter) Behavioral Modelling using If Else Statement
- Get link
- X
- Other Apps
Verilog Code for BCD Counter (Mod 10 Counter) Behavioral Modelling using If Else Statement module bcd_Count( input clock, reset, output [3:0]dout ); reg [3:0]dout; initial dout = 0; always @ (posedge (clock)) begin if (reset) dout <= 0; else if (dout <= 9) dout <= dout + 1; else if (dout == 9) dout <= 0; end endmodule Xillinx Output: BCD Counter Behavioral Modelling Response Also See: List of Verilog Programs
Verilog: 4 Bit Counter Behavioral Modelling using If Else Statement
- Get link
- X
- Other Apps
Verilog Code for 4 Bit Counter Behavioral Modelling using If Else Statement module 4_bit_Count( input clock, reset, output [3:0]dout ); reg [3:0]dout; initial dout = 0; always @ (posedge (clock)) begin if (reset) dout <= 0; else dout <= dout + 1; end endmodule Xillinx Output: 4 Bit Counter Behavioral Modelling Response Also See: List of Verilog Programs
Verilog: 4 Bit Full Adder Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 4 Bit Full Adder Behavioral Modelling with Testbench Code module 4_bit_Add( input [3:0]a,b, input cin, output [3:0]sum, output cout ); reg [3:0]sum; reg cout; always @ (a or b or cin) assign {cout,sum}= a + b + cin; endmodule //Testbench code for 4 Bit Full Adder Behavioral Modelling initial begin // Initialize Inputs a = 0; b = 0; cin = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100 a=4; b=9; cin=1; #100 a=15; b=5; cin=1; #100 a=7; b=5; cin=0; #100 a=6; b=10; cin=1; end initial begin #100 $monitor (“ a = %b, b = %b, cin = %b, sum = %b, cout = %b”, a, b, cin, sum, cout); end endmodule Xillinx Output: 4 Bit Full Adder Behavioral Modelling Response Also See: List of Verilog Programs
Verilog: 2 Bit Counter Behavioral Modelling using If Else Statement
- Get link
- X
- Other Apps
Verilog Code for 2 Bit Counter Behavioral Modelling using If Else Statement module 2_bit_Count( input clock, reset, output [1:0]dout ); reg [1:0]dout; initial dout = 0; always @ (posedge (clock)) begin if (reset) dout <= 0; else dout <= dout + 1; end endmodule Xillinx Output: 2 Bit Counter using If Else Behavioral Modelling Also See: List of Verilog Programs
Verilog Code for 8 to 3 Priority Encoder Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 8 to 3 Priority Encoder Behavioral Modelling using Case Statement with Testbench Code module pri_Enc( input [7:0]din, output [7:0]dout, ); reg [7:0]dout; always @ (din) case (din) 8’b 1xxx xxxx : dout = 7; 8’b x1xx xxxx : dout = 6; 8’b xx1x xxxx : dout = 5; 8’b xxx1 xxxx : dout = 4; 8’b xxxx 1xxx : dout = 3; 8’b xxxx x1xx : dout = 2; 8’b xxxx xx1x : dout = 1; 8’b xxxx xxx1 : dout = 0; default : dout = 3’bxxx; endcase endmodule //Testbench code for 8 to 3 Priority Encoder Behavioral Modelling initial begin // Initialize Inputs din = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100 din...
Verilog Code for 4 Bit Full Subtractor Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 4 Bit Full Subtractor Behavioral Modelling with Testbench Code module 4_bit_Sub( input [3:0]a,b, input bin, output [3:0]diff, output bout ); reg [3:0]diff; reg bout; always @ (a or b or bin) assign {bout,diff}= (~a) + b + bin; endmodule //Testbench code for 4 Bit Full Subtractor Behavioral Modelling initial begin // Initialize Inputs a = 0; b = 0; bin = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100 a=4; b=9; bin=1; #100 a=15; b=5; bin=1; #100 a=7; b=5; bin=0; #100 a=6; b=10; bin=1; end initial begin #100 $monitor (“ a = %b, b = %b, bin = %b, diff = %b, bout = %b”, a, b, bin, diff, bout); end endmodule Also See: List of Verilog Programs
Verilog: 3 Bit Magnitude Comparator Behavioral Modelling using If Else Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 3 Bit Magnitude Comparator Behavioral Modelling using If Else Statement with Testbench Code module 3_Mag_Comp( input [2:0]a,b, output equal, greater, lower ); reg greater, equal, lower; initial greater = 0, equal = 0, lower = 0; always @ (a or b) begin if (a < b) begin greater = 0; equal = 0; lower = 1; end else if (a == b) begin greater = 0; equal = 1; lower = 0; end else ...
Verilog: T Flip Flop Behavioral Modelling using If Else Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog: D Flip Flop Behavioral Modelling using If Else Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for D Flip Flop Behavioral Modelling using If Else with Testbench Code module D_FF( input D,clock,reset, output q, qb ); reg q, qb; always @ (posedge (clock)) begin if (reset) q <= 0; else q <= D; end endmodule //Testbench code for D Flip Flop Behavioral Modelling using If Else Statement initial begin // Initialize Inputs D = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; D=1; #100; D=0; end initial begin #100 $monitor (“ clock=%b, reset=%b, D=%b, q=%b, qb=%b”, clock, reset, D, q, qb); end endmodule Xillinx Outp...
Verilog: JK Flip Flop Behavioral Modelling using If Else Statement with Testbench Code
- Get link
- X
- Other Apps
Ads
Popular posts from this blog
1 to 4 DEMUX (Demultiplexer) Verilog CodeStructural/Gate Level Modelling with Testbench
Verilog Code for 1 to 4 DEMUX Structural/Gate Level Modelling 1-4 DEMUX module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); not(s1n,s1),(s0n,s0); and(y0,d,s0n,s1n),(y1,d,s0,s1n),(y2,d,s0n,s1),(y3,d,s0,s1); endmodule //Testbench code for 1 to 4 DEMUX Structural/Gate Level Modelling initial begin // Initialize Inputs d = 1; s0 = 0; s1 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100;d = 1;s0 = 1;s1 = 0; #100;d = 1;s0 = ...
VLSI: 2 Bit Magnitude Comparator Dataflow Modelling
module mag_comp2bit( input a0, input a1, input b0, input b1, output p, // p = (a < b) output r, // r = (a > b) output q // q = (a = b) ); assign q = ((~a1) ^ (b1)) & (a0 & b0); assign p = (((~a1) & b1) | (b0 & (~a0) & (~a1)) | ((~a0) & b1 & b0)); assign r = ((a1 & (~b1)) | ((~b0) & a1 & a0) | (a0 & (~b1) & (~b0))); endmodule
VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench
Verilog Code for 1-4 DEMUX Dataflow Modelling module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); assign s1n = ~ s1; assign s0n = ~ s0; assign y0 = d& s0n & s1n; assign y1 = d & s0 & s1n; assign y2 = d & s0n & s1; assign y3 = d & s0 & s1; endmodule //Testbench code for 1-4 DEMUX Dataflow Modelling initial begin // Initialize Inputs ...
VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling
module bcd_ex3_Dataflow( input a, input b, input c, input d, output w, output x, output y, output z ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd( input w, input x, input y, input z, output a, output b, output c, output d ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule
VLSI: Half Subtractor and Full Subtractor Gate Level Modelling
Half Subtractor: Verilog Module Code: module half_subtractor ( input a, input b, output diff output borr ); wire x; xor (diff,a,b); not (x,a); and (borr,x,b); endmodule Full Subtractor: Verilog Module Code: module full_subtractor ( input a, input b, input c, output diff output borr ); wire x,n2,z,n1; xor s1(x,a,b); not s3(n2,x); not s4(n1,c); and s5(y,n1,b); xor s2(diff,a,x); and s6(z,n2,a); or (borr,y,z); endmodule