Posts

Showing posts from March, 2020

Ads

Pressure Converter

Pressure Equivalents First, type the number you wish converted here: Then, click radio buttons for desired conversion: Fm: megadynes/ sq cm kg/ sq cm lb/ sq in atmos- pheres Hg* Meters Hg* Inches H2O* Meters H20* Inches H20* Feet To: megadynes/ sq cm kg/ sq cm lb/ sq in atmos- pheres Hg* Meters Hg* Inches H2O* Meters H2O* Inches H20* Feet *Standard columns of Mercury at 0 o C, g = 980.665 cm/sec/sec Standard columns of Water at 60 o F, g = 32.1756 ft/sec/sec

Weight Converter

Weight Converter Select unit from Drop Down Menu and enter the a number in the box beside it, Click on Convert button. Gram Kilogram Ounce Pound U.S. Ton Gram: Kilogram: Ounce: Pound: U.S. Ton:

Loan Calculator

The results of this loan payment calculator are for comparison purposes only. They will be a close approximation of actual loan repayments if available at the terms entered, from a financial institution. To use, enter values for the Loan Amount, Number of Months for Loan, and the Interest Rate (e.g. 7.25), and click the Calculate button. Clicking the Reset button will clear entered values. Description Data Entry Loan Amount Loan Length in Months Interest Rate Monthly Payment Calculated Enter only numeric values (no commas), using decimal points where needed. Non-numeric values will cause errors.

Currency Converter

Euro: US Dollar: British Pound: Japanese Yen:

Body Mass Index (BMI) Calculator

Your Weight(kg): Your Height(cm): Your BMI: This Means: Other Online Tools: Temperature Converter Length Converter World Clock

Temperature Converter

Type a value in any of the fields and click Convert to convert between Temperature measurements: Celsius: Fahrenheit: Kelvin: Other Online Tools: Length Converter BMI Calculator World Clock

Length Converter

Type a value in any of the fields and click Convert to convert between Length measurements: Centimeter: Inch: Feet: Meter: Yard: Kilometer: Miles: Other Online Tools: Temperature Converter BMI Calculator World Clock

Online Calculator

Simple Calculator

C Program: Show Address of Variable using Pointers

#include<stdio.h> #include<conio.h> void main() { int a=12; float b=24.25; char c='a'; clrscr(); printf("\n Address of A : %u",&a); printf("\n Address of B : %u",&b); printf("\n Address of C : %u",&c); getch(); } Output: Address of A : 65524 Address of B : 65520 Address of C : 65519 C Programs: ------------------------ |   Basic Programs    |   Loop Programs    |   Conditional Programs    |   Matrix Programs    |   Array Programs    |   String Programs    |   File Handling    |   Other Programs    |   Graphics in C     |  Pattern Programs ------------------------

VLSI: Half Subtractor and Full Subtractor Gate Level Modelling

Image
Half Subtractor: Verilog Module Code: module half_subtractor (      input  a,      input  b,      output  diff       output  borr ); wire x; xor (diff,a,b); not (x,a); and (borr,x,b); endmodule Full Subtractor: Verilog Module Code: module full_subtractor (      input  a,      input  b,      input  c,      output  diff       output  borr ); wire x,n2,z,n1; xor s1(x,a,b); not s3(n2,x); not s4(n1,c); and s5(y,n1,b); xor s2(diff,a,x); and s6(z,n2,a); or (borr,y,z); endmodule

VLSI: Logic Gates Gate Level Modelling

Image
AND Gate: Verilog Module Code: module and_gate (      input  a,      input  b,      output  c ); and (c,a,b); endmodule OR Gate: Verilog Module Code: module or_gate (      input  a,      input  b,      output  c ); or (c,a,b); endmodule NAND Gate: Verilog Module Code: module nand_gate (      input  a,      input  b,      output  c ); nand (c,a,b); endmodule NOR Gate: Verilog Module Code: module nor_gate (      input  a,      input  b,      output  c ); nor (c,a,b); endmodule XOR Gate: Verilog Module Code: module xor_gate (      input  a,      input  b,      output  c ); xor (c,a,b); endmodule XNOR Gate: Verilog Module Code:   module xnor_gate (      input  a,      input  b,      output  c ); xnor (c,a,b); endmodule NOT Gate: Verilog Module Code: module not_gate (      input  a,      output  c ); not (c,a); endmodule

VLSI: 2 Bit Magnitude Comparator Dataflow Modelling

Image
module mag_comp2bit(     input a0,     input a1,     input b0,     input b1,     output p,   // p = (a < b)     output r,     // r = (a > b)     output q     // q = (a = b)     ); assign q = ((~a1) ^ (b1)) & (a0 & b0); assign p = (((~a1) & b1) | (b0 & (~a0) & (~a1)) | ((~a0) & b1 & b0)); assign r = ((a1 & (~b1)) | ((~b0) & a1 & a0) | (a0 & (~b1) & (~b0))); endmodule

VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling

Image
module bcd_ex3_Dataflow(     input a,     input b,     input c,     input d,     output w,     output x,     output y,     output z     ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd(     input w,     input x,     input y,     input z,     output a,     output b,     output c,     output d     ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule

VLSI: 4-2 Encoder Dataflow Modelling

Image
module Four_Two_Encoder(     input a0,     input a1,     input a2,     input a3,     output e0,     output e1,     output v     ); assign e0 = a1 | a3; assign e1 = a2 | a3; assign v = a0; endmodule

VLSI: 2-4 Decoder Dataflow Modelling

Image
module  Two_Four_Decoder(     input a0,     input a1,     output d0,     output d1,     output d2,     input d3     ); assign d0 = ((~a0) & (~a1)); assign d1 = ((~a0) & a1); assign d2 = (a0 & (~a1)); assign d3 = (a0 & a1); endmodule

VLSI: Gray to Binary and Binary to Gray Dataflow Modelling

Image
Gray to Binary: module Gray_to_Binary(     input g1,     input g2,     input g3,     input g4,     output b1,     output b2,     output b3,     output b4     ); assign b4 = g4; assign b3 = b4 ^ g3; assign b2 = b3 ^ g2; assign b1 = b2 ^ g1; endmodule Binary to Gray: module Binary_to_Gray(     input b1,     input b2,     input b3,     input b4,     output g1,     output g2,     output g3,     output g4     ); assign g1 = b1; assign g2 = b1 ^ b2; assign g3 = b2 ^ b3; assign g4 = b3 ^ b4; endmodule

VLSI: 4-1 Multiplexer (MUX) Dataflow Modelling

module Four_to_One_MUX(     input s0,     input s1,     input i0,     input i1,     input i2,     input i3,     output out     ); assign y0 = (i0 & (~s0) & (~s1)); assign y1 = (i1 & (~s0) & s1); assign y2 = (i2 & s0 & (~s1)); assign y3 = (i3 & s0 & s1); assign out = (y0 | y1 | y2 | y3); endmodule MUX using Conditional Statement: module  Four_to_One_MUX(      input s0,     input s1,     input i0,     input i1,     input i2,     input i3,     output out     ); assign out = s0 ? (s1 ? i3 : i2) : (s1 ? i1 : i0); endmodule              

VLSI: 4-1 MUX Gate Level Modelling

module FourtoOneMUX(     input s1,     input s0,     input i0,     input i1,     input i2,     input i3,     output out     ); wire sn0,sn1; wire y0,y1,y2,y3; not n1(s1n,s1); not n2(s0n,s0); and a1(y0,i0,sn0,sn1); and a2(y1,i1,sn0,s1); and a3(y2,i2,s0,sn1); and a4(y3,i3,s0,s1); or o1(out,y0,y1,y2,y3); endmodule

VLSI: Half Adder and Full Adder Gate Level Modelling

Image
Half Adder: module  HalfAdder(      input A,     input B,     output sum,     output carry     );   xor  (sum,A,B); and  (carry,A,B); endmodule Full Adder: module FullAdder(     input A,     input B,     input Cin,     output sum,     output carry     ); wire a1, a2, a3;    xor g1(a1,A,B); and g4(a2,A,B); and g3(a3,a1,Cin); or g5(carry,a2,a3); xor  g2(sum,a1,Cin); endmodule

VLSI: Binary to Gray and Gray to Binary Converter Gate Level Modelling

Binary to Gray: module Binary_to_Gray(     input b1,     input b2,     input b3,     input b4,     output g1,     output g2,     output g3,     output g4     ); xor u1(g2,b1,b2); xor u2(g3,b2,b3); xor u3(g4,b4,b3); buf u4(g1,b1); endmodule Gray to Binary: module GraytoBinary(     input g1,     input g2,     input g3,     input g4,     output b1,     output b2,     output b3,     output b4     ); xor u1(b4,g1,b3); xor u2(b3,g3,b2); xor u3(b2,g2,g1); buf u4(b1,g1); endmodule

VLSI: Encoder Gate Level Modelling

module Encoder(d0,d1,d2,d3,d4,d5,d6,d7,a,b,c); input d0,d1,d2,d3,d4,d5,d6,d7; output a,b,c; or (a,d4,d5,d6,d7); or (b,d2,d3,d6,d7); or (c,d1,d3,d5,d7); endmodule

VLSI: 8-1 Demultiplexer Dataflow Modelling

module Demultiplexer(in,s0,s1,s2,d0,d1,d2,d3,d4,d5,d6,d7); input in,s0,s1,s2; output d0,d1,d2,d3,d4,d5,d6,d7; assign d0=(in & ~s2 & ~s1 &~s0), d1=(in & ~s2 & ~s1 &s0), d2=(in & ~s2 & s1 &~s0), d3=(in & ~s2 & s1 &s0), d4=(in & s2 & ~s1 &~s0), d5=(in & s2 & ~s1 &s0), d6=(in & s2 & s1 &~s0), d7=(in & s2 & s1 &s0); endmodule

VLSI: Carry Look Ahead Adder

module CLA_Adder(a,b,cin,sum,cout);   input [3:0] a,b; input cin;   output [3:0] sum; output cout; wire p0,p1,p2,p3,g0,g1,g2,g3,c1,c2,c3,c4; assign p0=(a[0]^b[0]), p1=(a[1]^b[1]), p2=(a[2]^b[2]), p3=(a[3]^b[3]); assign g0=(a[0]&b[0]), g1=(a[1]&b[1]), g2=(a[2]&b[2]), g3=(a[3]&b[3]); assign c0=cin, c1=g0|(p0&cin), c2=g1|(p1&g0)|(p1&p0&cin), c3=g2|(p2&g1)|(p2&p1&g0)|(p1&p1&p0&cin), c4=g3|(p3&g2)|(p3&p2&g1)|(p3&p2&p1&g0)|(p3&p2&p1&p0&cin); assign sum[0]=p0^c0, sum[1]=p1^c1, sum[2]=p2^c2, sum[3]=p3^c3; assign cout=c4; endmodule

VLSI: 4 Bit Adder and 4 Bit Subtractor

4 Bit Adder: module MultibitAdder(a,b,cin,sum,cout); input [3:0] a,b; input cin; output [3:0]sum; output cout; assign {cout,sum}=a+b+cin; endmodule 4 Bit Subtractor: module MultibitSubstractor(a,b,bin,difference,bout); input [3:0] a,b; input bin; output [3:0]difference; output bout; assign {bout,difference}=a-b-bin; endmodule

VLSI: Logic Gates Dataflow Modelling

Image
AND Gate: Verilog Module Code: module and_gate (      input  a,      input  b,      output  c ); assign  c = a & b; endmodule OR Gate: Verilog Module Code: module or_gate (      input a,      input b,      output c ); assign  c = a | b; endmodule NAND Gate: Verilog Module Code: module nand_gate (      input  a,      input  b,      output  c ); assign  c = ~ ( a & b ); endmodule NOR Gate: Verilog Module Code: module nor_gate (      input  a,      input  b,      output  c ); assign  c = ~ ( a | b ); endmodule XOR Gate: Verilog Module Code: module xor_gate (      input  a,      input  b,      output  c ); assign  c = a  ^  b ; endmodule XNOR Gate: Verilog Module Code:   module xnor_gate (      input  a,      input  b,      output  c ); assign  c = ~ ( a  ^  b ) ; endmodule NOT Gate: Verilog Module Code: module not_gat

Ads

Popular posts from this blog

VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling

Full Subtractor Verilog Code in Structural/Gate Level Modelling with Testbench

VLSI: 4-1 MUX Dataflow Modelling with Testbench

VLSI: Half Subtractor and Full Subtractor Gate Level Modelling

VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench