Posts
Showing posts from November, 2020
Latest Post
Ads
Verilog: 3 to 8 Decoder Behavioral Modelling using Case Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 3 to 8 Decoder Behavioral Modelling using Case Statement with Testbench Code module 3_8_DEC( input [3:0]din, output [7:0]dout ); reg [7:0]dout; always @ (din) case (din) 0 : dout[0] = 1; 1 : dout[1] = 1; 2 : dout[2] = 1; 3 : dout[3] = 1; 4 : dout[4] = 1; 5 : dout[5] = 1; 6 : dout[6] = 1; 7 : dout[7] = 1; default : dout = 8’bxxxxxxxx; endcase endmodule //Testbench code for 3 to 8 Decoder Behavioral Modelling using Case Statement initial begin // Initialize Inputs din = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; din=0; #100; din=1; #100; din=2; #100; din=3; #100; din=4; #100; din=5; #100; din=6;...
Verilog: 8 to 1 MUX Behavioral Modelling using Verilog Case Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 8 to 1 MUX Behavioral Modelling using Verilog Case Statement with Testbench Code module 8_1_MUX( input [7:0]i, input s2,s1,s0, output out ); reg out; always @ (i or s2 or s1 or s0) case ({s2,s1,s0}) 0 : out = I[0]; 1 : out = I[1]; 2 : out = I[2]; 3 : out = I[3]; 4 : out = I[4]; 5 : out = I[5]; 6 : out = I[6]; 7 : out = I[7]; default : out = 1’bx; endcase endmodule //Testbench code for 8 to 1 MUX (Multiplexer) Behavioral Modelling using Verilog Case Statement initial begin // Initialize Inputs i=8’b 10101010; s2=0; s1=0; s0=0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; s2=0; s1=0; s0=1; #100; s2=0;...
Verilog: 1 to 4 DEMUX (Demultiplexer) Behavioral Modelling using Case Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 1 to 4 DEMUX Behavioral Modelling using Case Statement with Testbench Code module 1_4_DEMUX( input i, input s1, s0, output [3:0]out ); reg [3:0]out; always @ (i or s0 or s1) case ({s1,s0}) 0: out0 = i; 1: out1 = i; 2: out2 = i; 3: out3 = i; default: out = 4'bxxxx; endcase endmodule //Testbench code for 1 to 4 DEMUX (DeMultiplexer) Behavioral Modelling using Case Statement initial begin // Initialize Inputs i = 1;s1 = 0;s0 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; s1=0; s0=1; #100; s1=1; s0=0; #100; s1=1; s0=1; end initial begin #100 ; $monitor (“I=%b, s1=%b, s0=%b, out=%b”, I, s1, s0, out); end endmodule
Verilog: 1 to 8 DEMUX Behavioral Modelling using Case Statement with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 1 to 8 DEMUX Behavioral Modelling using Case Statement with Testbench Code module 1_8_DEMUX( input i, input s2, s1, s0, output [7:0]out ); reg [7:0]out; always @ (i or s0 or s1 or s2) case ({s2,s1,s0}) 0: out0 = i; 1: out1 = i; 2: out2 = i; 3: out3 = i; 4: out4 = i; 5: out5 = i; 6: out6 = i; 7: out7 = i; default: out = 8'bxxxxxxx; endcase endmodule //Testbench code for 1 to 8 DEMUX (DeMultiplexer) Behavioral Modelling using Case Statement initial begin // Initialize Inputs i = 1;s2 = 0;s1 = 0;s0 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; s2=0; s1=0; s0=1; #100; s2=0; s1=1; s0=0; #100; s2=0; s1=1; s0=1; #100; s2=1; s1=0; s0=0; #100; s2=1; s1=0; s0=1;...
Verilog: 1-2 De-Multiplexer (DEMUX) using Case Statement Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 1 to 2 DEMUX Behavioral Modelling using Case Statement with Testbench Code module 1_2_DEMUX( input i0, input s0, output out1, output out2 ); always @ (i0 or s0) case (s0) 0: out1 = i0; 1: out2 = i0; default: out1 = 1'bx;out2 = 1'bx; endcase endmodule //Testbench code for 1 to 2 DEMUX (DeMultiplexer) Behavioral Modelling using Case Statement initial begin // Initialize Inputs i0 = 1;s0 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; s0 = 1; #100; s0 = 0; end Output: 1-2 DeMUX Response
Verilog: 2-1 Multiplexer with Case Statement Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code for 2 to 1 MUX Behavioral Modelling using Case Statement with Testbench Code module 2_1_MUX( input i0, input i1, input s0, output out ); always @ (i0 or i1 or s0) case (s0) 0: out = i0; 1: out = i1; default: out = 1'bx; endcase endmodule //Testbench code for 2 to 1 MUX (Multiplexer)Behavioral Modelling using Case Statement initial begin // Initialize Inputs i0 = 1;i1 = 1;s0 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; s0 = 0; #100; s0 = 1; end Output: 2 - 1 MUX Behavioral Modelling Response
Verilog: 4 to 1 Multiplexer Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code 4-1 Multiplexer Behavioral Modelling using Case Statement module Mux_4to1 ( input [3:0] i, input s1, s0, output out ); always @(i or s1 or s0) case({s1, s0}) 0 : out = i[0]; 1 : out = i[1]; 2 : out = i[2]; 3 : out = i[3]; default : out = 1’bx; endcase endmodule // test-bench initial begin i=1'b1010; s1=0; s0=0; #100; //wait 100ns for global reset to finish //add stimulus here #100 s1 = 0; s0= 1; #100 s1 = 1; s0= 0; #100 s1 = 1; s0= 1; end
Verilog: Full Adder Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps
Verilog Code Full Adder Behavioral Modelling module Full_Adder ( input a, b, cin; output sum, carry ); always @(a or b or cin) assign {carry,sum} = a + b + cin; endmodule // test-bench initial begin a=0; b=0; #100; //wait 100ns for global reset to finish //add stimulus here #100 a=0; b=1; cin=1; #100 a=1; b=0; cin=1; #100 a=1; b=1; cin=1; end initial begin #100 $ monitor (“a=%b, b=%b, cin=%b, sum=%b, carry=%b”, a, b, cin, sum, carry); end endmodule Xilinx Output: Verilog code for Full Adder Behavioral Modelling
Ads
Popular posts from this blog
1 to 4 DEMUX (Demultiplexer) Verilog CodeStructural/Gate Level Modelling with Testbench
Verilog Code for 1 to 4 DEMUX Structural/Gate Level Modelling 1-4 DEMUX module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); not(s1n,s1),(s0n,s0); and(y0,d,s0n,s1n),(y1,d,s0,s1n),(y2,d,s0n,s1),(y3,d,s0,s1); endmodule //Testbench code for 1 to 4 DEMUX Structural/Gate Level Modelling initial begin // Initialize Inputs d = 1; s0 = 0; s1 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100;d = 1;s0 = 1;s1 = 0; #100;d = 1;s0 = ...
VLSI: 2 Bit Magnitude Comparator Dataflow Modelling
module mag_comp2bit( input a0, input a1, input b0, input b1, output p, // p = (a < b) output r, // r = (a > b) output q // q = (a = b) ); assign q = ((~a1) ^ (b1)) & (a0 & b0); assign p = (((~a1) & b1) | (b0 & (~a0) & (~a1)) | ((~a0) & b1 & b0)); assign r = ((a1 & (~b1)) | ((~b0) & a1 & a0) | (a0 & (~b1) & (~b0))); endmodule
VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench
Verilog Code for 1-4 DEMUX Dataflow Modelling module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); assign s1n = ~ s1; assign s0n = ~ s0; assign y0 = d& s0n & s1n; assign y1 = d & s0 & s1n; assign y2 = d & s0n & s1; assign y3 = d & s0 & s1; endmodule //Testbench code for 1-4 DEMUX Dataflow Modelling initial begin // Initialize Inputs ...
VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling
module bcd_ex3_Dataflow( input a, input b, input c, input d, output w, output x, output y, output z ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd( input w, input x, input y, input z, output a, output b, output c, output d ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule
VLSI: Half Subtractor and Full Subtractor Gate Level Modelling
Half Subtractor: Verilog Module Code: module half_subtractor ( input a, input b, output diff output borr ); wire x; xor (diff,a,b); not (x,a); and (borr,x,b); endmodule Full Subtractor: Verilog Module Code: module full_subtractor ( input a, input b, input c, output diff output borr ); wire x,n2,z,n1; xor s1(x,a,b); not s3(n2,x); not s4(n1,c); and s5(y,n1,b); xor s2(diff,a,x); and s6(z,n2,a); or (borr,y,z); endmodule