Latest Post
C Program for Level Sketch
- Get link
- X
- Other Apps
C Level Sketch:
#include<stdio.h>
#include<conio.h>
#include<math.h>
int main()
{
float th,ov, HH,H,L,LL,lowTap,UpTap,CC,HH1,H1,L1,LL1,HHper,Hper,Lper,LLper,BtTap;
char ch;
do
{
printf("\nEnter Tank Height in mm:");
scanf("%f",&th);
printf("\nHeight of HH:");
scanf("%f",&HH);
printf("\nHeight of H:");
scanf("%f",&H);
printf("\nHeight of L:");
scanf("%f",&L);
printf("\nHeight of LL:");
scanf("%f",&LL);
printf("\nEnter Height of Overflow Nozzle (if required):");
scanf("%f",&ov);
if (ov != 0)
{
th = ov;
}
else
{
th = th;
}
printf("Height Valid: %.2f",th);
HHper = (HH * 100)/th;
Hper = (H * 100)/th;
Lper = (L * 100)/th;
LLper = (LL * 100)/th;
if (HHper < 90 && LLper > 10)
{
printf("\nAlarm Positions are Valid.");
}
else
{
printf("\nChange Alarm Positions.");
}
printf("\nEstimate Lower Tapping Height:");
scanf("%f",&lowTap);
printf("\nEstimate Upper Tapping Height:");
scanf("%f",&UpTap);
printf("\nEstimate Bottom Pipe(Enter zero if not required):");
scanf("%f",&BtTap);
if (BtTap == 0)
{
CC = UpTap - lowTap;
HH1 = HH - lowTap;
H1 = H - lowTap;
L1 = L - lowTap;
LL1 = LL - lowTap;
}
else
{
CC = UpTap + BtTap;
HH1 = HH + BtTap;
H1 = H + BtTap;
L1 = L + BtTap;
LL1 = LL + BtTap;
}
printf("\n C-C Distance is %f",CC);
HHper = (HH1 * 100)/CC;
Hper = (H1 * 100)/CC;
Lper = (L1 * 100)/CC;
LLper = (LL1 * 100)/CC;
printf("\nHH percentage: %.2f",HHper);
printf("\nH percentage: %.2f",Hper);
printf("\nL percentage: %.2f",Lper);
printf("\nLL percentage: %.2f",LLper);
if (HHper < 90 && LLper > 10)
{
printf("\nTapping Positions are Valid.");
}
else
{
printf("\nChange Tapping Positions.");
}
printf ("\n\nDo you want to repeat the operation Y/N: ");
scanf (" %c", &ch);
}
while (ch == 'y' || ch == 'Y');
return 0;
}
- Get link
- X
- Other Apps
Popular posts from this blog
VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench
Verilog Code for 1-4 DEMUX Dataflow Modelling module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); assign s1n = ~ s1; assign s0n = ~ s0; assign y0 = d& s0n & s1n; assign y1 = d & s0 & s1n; assign y2 = d & s0n & s1; assign y3 = d & s0 & s1; endmodule //Testbench code for 1-4 DEMUX Dataflow Modelling initial begin // Initialize Inputs ...
VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling
module bcd_ex3_Dataflow( input a, input b, input c, input d, output w, output x, output y, output z ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd( input w, input x, input y, input z, output a, output b, output c, output d ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule
1 to 4 DEMUX (Demultiplexer) Verilog CodeStructural/Gate Level Modelling with Testbench
Verilog Code for 1 to 4 DEMUX Structural/Gate Level Modelling 1-4 DEMUX module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); not(s1n,s1),(s0n,s0); and(y0,d,s0n,s1n),(y1,d,s0,s1n),(y2,d,s0n,s1),(y3,d,s0,s1); endmodule //Testbench code for 1 to 4 DEMUX Structural/Gate Level Modelling initial begin // Initialize Inputs d = 1; s0 = 0; s1 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100;d = 1;s0 = 1;s1 = 0; #100;d = 1;s0 = ...
Verilog: 4 to 2 Encoder Behavioral Modelling using Case Statement with Testbench Code
Verilog Code for 4 to 2 Encoder Behavioral Modelling using Case Statement with Testbench Code module 4_2_ENC( input [3:0]din, output [1:0]dout ); reg [1:0]dout; always @ (din) case (din) 1 : dout[0] = 0; 2 : dout[1] = 1; 4 : dout[2] = 2; 8 : dout[3] = 3; default : dout = 2’bxx; endcase endmodule //Testbench code for 4 to 2 Encoder Behavioral Modelling using Case Statement initial begin // Initialize Inputs din = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; din=1; #100; din=2; #100; din=4; #100; din=8; end initial begin #100 $monitor (“ din=%b, dout=%b”, din, dout); end endmodule Xillinx Output: 4 - 2 Encoder Behavioral Modelling Verilog Response
Full Subtractor Verilog Code in Structural/Gate Level Modelling with Testbench
Verilog Code for Full Subtractor Structural/Gate Level Modelling module full_sub(borrow,diff,a,b,c); output borrow,diff; input a,b,c; wire w1,w4,w5,w6; xor (diff,a,b,c); not n1(w1,a); and a1(w4,w1,b); and a2(w5,w1,c); and a3(w6,b,c); or o1(borrow,w4,w5,w6); endmodule //Testbench code for Full Subtractor Structural/Gate Level Modelling initial begin // Initialize Inputs a = 0; b = 0; c = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; a = 0;b = 0;c = 1; #100; a = 0;b = 1;c = 0; #100; a = 0;b = 1;c = 1; #100; a = 1;b = 0;c = 0; #100; a = 1;b = 0;c = 1; #100; a = 1;b = 1;c = 0; #100; a = 1;b = 1;c = 1; end Output: RTL Schematic: Full Subtractor Verilog Other Verilog Programs: Go to Index of Verilog Programming
Comments
Post a Comment