Posts
Showing posts from September, 2020
Latest Post
Verilog: NAND Gate Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps

Verilog Code NAND Gate Behavioral Modelling module NAND_GATE ( input a, b, output out ); reg out; always @(a or b) begin if (a==1 & b==1) out = 1’b0; else out = 1’b1; endmodule //test-bench initial begin a=0; b=0; #100; //wait 100ns for global reset to finish //add stimulus here #100 a=0; b=1; #100 a=1; b=0; #100 a=1; b=1; end initial begin #100 $ monitor (“a=%b, b=%b, out=%b”, a, b, out); end endmodule Xilinx Output: NAND Gate Verilog Code Behavioral Modelling
Verilog: AND Gate Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps

Verilog Code AND Gate Behavioral Modelling module AND_GATE ( input a, b, output out ); reg out; always @(a or b) begin if (a==1 & b==1) out = 1’b1; else out = 1’b0; endmodule //test-bench initial begin a=0; b=0; #100; //wait 100ns for global reset to finish //add stimulus here #100 a=0; b=1; #100 a=1; b=0; #100 a=1; b=1; end initial begin #100 $ monitor (“a=%b, b=%b, out=%b”, a, b, out); end endmodule Xilinx Output: AND Gate Behavioral Response
Verilog: OR Gate Behavioral Modelling with Testbench Code
- Get link
- X
- Other Apps

Verilog Code OR Gate Behavioral Modelling module OR_GATE ( input a, b, output out ); reg out; always @(a or b) begin if (a==0 & b==0) out = 1’b0; else out = 1’b1; endmodule //test-bench initial begin a=0; b=0; #100; //wait 100ns for global reset to finish //add stimulus here #100 a=0; b=1; #100 a=1; b=0; #100 a=1; b=1; end initial begin #100 $ monitor (“a=%b, b=%b, out=%b”, a, b, out); end endmodule Xilinx Output: OR Gate Response
Applied Instrumentation GTU (Sem-1) - ME Instrumentation and Control (IC)
- Get link
- X
- Other Apps
1. STUDY MATERIAL for Applied Instrumentation GTU (Sem-1) - ME Instrumentation and Control (IC) SEM 1: Subjects: AIDC (Advanced Industrial Drives and Control) ISC (Intelligent Systems and Control) OTE (Optimization Techniques for Engineers) ESI (Embedded System for Instrumentation) IPR Click on the below given links to download study material: Syllabus Books Notes Study Material Lab Manual Question Papers Assignments Sem 2: ME - Applied Instrumentation Click on the below given link to download study material: Sem 2 Folder Subjects: AVD (Advanced Verilog Design) ISI (Intelligent Sensors and Instrumentation) DC (Digital Control) ASPE (Advanced Signal Processing and Estimation) Disaster Management Also See: Optimization Techniques in C Verilog Programming Filter Designing
Popular posts from this blog
VLSI: BCD to Excess 3 and Excess 3 to BCD Dataflow Modelling
module bcd_ex3_Dataflow( input a, input b, input c, input d, output w, output x, output y, output z ); assign w = (a | (b & c) | (b & d)); assign x = (((~b) & c) | ((~b) & d) | (b & (~c) & (~d))); assign y = ((c & d) | ((~c) & (~d))); assign z = ~d; endmodule Excess 3 to BCD: module ex3_to_bcd( input w, input x, input y, input z, output a, output b, output c, output d ); assign a = ((w & x) | (w & y & z)); assign b = (((~x) & (~y)) | ((~x) & (~z)) | (x & y & z)); assign c = (((~y) & z) | (y & (~z))); assign d = ~z; endmodule
VLSI: 1-4 DEMUX (Demultiplexer) Dataflow Modelling with Testbench
Verilog Code for 1-4 DEMUX Dataflow Modelling module demux_1_to_4( input d, input s0, input s1, output y0, output y1, output y2, output y3 ); assign s1n = ~ s1; assign s0n = ~ s0; assign y0 = d& s0n & s1n; assign y1 = d & s0 & s1n; assign y2 = d & s0n & s1; assign y3 = d & s0 & s1; endmodule //Testbench code for 1-4 DEMUX Dataflow Modelling initial begin // Initialize Inputs ...
Verilog: 2 - 4 Decoder Structural/Gate Level Modelling with Testbench
Verilog Code for 2-4 Decoder Structural/Gate Level Modelling 2-4 Line Decoder module decoder_2_to_4( input a0, input a1, output d0, output d1, output d2, output d3 ); not (an0,a0),(an1,a1); and (d0,an0,an1),(d1,a0,an1),(d2,an0,a1),(d3,a0,a1); endmodule //Testbench code for 2-4 Decoder Structural/Gate Level Modelling initial begin // Initialize Inputs a0 = 0;a1 = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; a0=1;a1=0; #100; a0=0;a1=1; #100; a0=1;a1=1; end Output: Verilog 2-4 Decoder Response Other Verilog Programs: Go to Index of Verilog Prog...
Verilog: 4 to 2 Encoder Behavioral Modelling using Case Statement with Testbench Code
Verilog Code for 4 to 2 Encoder Behavioral Modelling using Case Statement with Testbench Code module 4_2_ENC( input [3:0]din, output [1:0]dout ); reg [1:0]dout; always @ (din) case (din) 1 : dout[0] = 0; 2 : dout[1] = 1; 4 : dout[2] = 2; 8 : dout[3] = 3; default : dout = 2’bxx; endcase endmodule //Testbench code for 4 to 2 Encoder Behavioral Modelling using Case Statement initial begin // Initialize Inputs din = 0; // Wait 100 ns for global reset to finish #100; // Add stimulus here #100; din=1; #100; din=2; #100; din=4; #100; din=8; end initial begin #100 $monitor (“ din=%b, dout=%b”, din, dout); end endmodule Xillinx Output: 4 - 2 Encoder Behavioral Modelling Verilog Response
VLSI: 2 Bit Magnitude Comparator Dataflow Modelling
module mag_comp2bit( input a0, input a1, input b0, input b1, output p, // p = (a < b) output r, // r = (a > b) output q // q = (a = b) ); assign q = ((~a1) ^ (b1)) & (a0 & b0); assign p = (((~a1) & b1) | (b0 & (~a0) & (~a1)) | ((~a0) & b1 & b0)); assign r = ((a1 & (~b1)) | ((~b0) & a1 & a0) | (a0 & (~b1) & (~b0))); endmodule